LM2585

SIMPLE SWITCHER ${ }^{\circledR}$ 3A Flyback Regulator

General Description

The LM2585 series of regulators are monolithic integrated circuits specifically designed for flyback, step-up (boost), and forward converter applications. The device is available in 4 different output voltage versions: $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable.
Requiring a minimum number of external components, these regulators are cost effective, and simple to use. Included in the datasheet are typical circuits of boost and flyback regulators. Also listed are selector guides for diodes and capacitors and a family of standard inductors and flyback transformers designed to work with these switching regulators.
The power switch is a 3.0A NPN device that can stand-off 65 V . Protecting the power switch are current and thermal limiting circuits, and an undervoltage lockout circuit. This IC contains a 100 kHz fixed-frequency internal oscillator that permits the use of small magnetics. Other features include soft start mode to reduce in-rush current during start up, current mode control for improved rejection of input voltage and output load transients and cycle-by-cycle current limiting. An output voltage tolerance of $\pm 4 \%$, within specified input voltages and output load conditions, is guaranteed for the power supply system.

Features

- Requires few external components
- Family of standard inductors and transformers
- NPN output switches 3.0A, can stand off 65V
- Wide input voltage range: 4 V to 40 V
- Current-mode operation for improved transient response, line regulation, and current limit
- 100 kHz switching frequency
- Internal soft-start function reduces in-rush current during start-up
- Output transistor protected by current limit, under voltage lockout, and thermal shutdown
- System Output Voltage Tolerance of $\pm 4 \%$ max over line and load conditions

Typical Applications

- Flyback regulator
- Multiple-output regulator
- Simple boost regulator
- Forward converter

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Input Voltage	$-0.4 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 45 \mathrm{~V}$
Switch Voltage	$-0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SW}} \leq 65 \mathrm{~V}$
Switch Current (Note 2)	Internally Limited
Compensation Pin Voltage	$-0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{COMP}} \leq 2.4 \mathrm{~V}$
Feedback Pin Voltage	$-0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{FB}} \leq 2 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	
\quad (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$

Maximum Junction Temperature (Note 3)
$150^{\circ} \mathrm{C}$
Power Dissipation (Note 3) Internally Limited Minimum ESD Rating

$$
(\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega)
$$

2 kV

Operating Ratings

Supply Voltage	$4 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}$
Output Switch Voltage	$0 \mathrm{~V} \leq \mathrm{V}_{\text {SW }} \leq 60 \mathrm{~V}$
Output Switch Current	$\mathrm{I}_{\text {SW }} \leq 3.0 \mathrm{~A}$
Junction Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$

Electrical Characteristics LM2585-3.3

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those in bold type face apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$.

Symbol	Parameters	Conditions	Typical	Min	Max	Units
SYSTEM PARAMETERS Test Circuit of Figure 2 (Note 4)						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.3 \mathrm{~A} \text { to } 1.2 \mathrm{~A} \end{aligned}$	3.3	3.17/3.14	3.43/3.46	V
$\Delta \mathrm{V}_{\text {OUT }} /$ ΔV_{IN}	Line Regulation	$\begin{aligned} & \mathrm{V}_{\text {IN }}=4 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.3 \mathrm{~A} \end{aligned}$	20		50/100	mV
$\Delta \mathrm{V}_{\text {OUT }} /$ $\Delta \mathrm{I}_{\text {LOAD }}$	Load Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.3 \mathrm{~A} \text { to } 1.2 \mathrm{~A} \end{aligned}$	20		50/100	mV
η	Efficiency	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.3 \mathrm{~A}$	76			\%
UNIQUE DEVICE PARAMETERS (Note 5)						
$\mathrm{V}_{\text {REF }}$	Output Reference Voltage	Measured at Feedback Pin $V_{\text {COMP }}=1.0 \mathrm{~V}$	3.3	3.242/3.234	3.358/3.366	V
$\Delta \mathrm{V}_{\text {REF }}$	Reference Voltage Line Regulation	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}$ to 40 V	2.0			mV
G_{M}	Error Amp Transconductance	$\begin{aligned} & \mathrm{I}_{\text {COMP }}=-30 \mu \mathrm{~A} \text { to }+30 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	1.193	0.678	2.259	mmho
$\mathrm{A}_{\text {VOL }}$	Error Amp Voltage Gain	$\begin{aligned} & \mathrm{V}_{\text {COMP }}=0.5 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{COMP}}=1.0 \mathrm{M} \Omega \text { (Note } 6 \text {) } \end{aligned}$	260	151/75		V/V

LM2585-5.0

Symbol	Parameters	Conditions	Typical	Min	Max	Units
SYSTEM PARAMETERS Test Circuit of Figure 2 (Note 4)						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=4 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.3 \mathrm{~A} \text { to } 1.1 \mathrm{~A} \end{aligned}$	5.0	4.80/4.75	5.20/5.25	V
$\Delta \mathrm{V}_{\text {OUT }} /$ $\Delta V_{\text {IN }}$	Line Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.3 \mathrm{~A} \end{aligned}$	20		50/100	mV
$\Delta \mathrm{V}_{\text {OUT }} /$ $\Delta \mathrm{I}_{\text {LOAD }}$	Load Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.3 \mathrm{~A} \text { to } 1.1 \mathrm{~A} \end{aligned}$	20		50/100	mV
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.6 \mathrm{~A}$	80			\%
UNIQUE DEVICE PARAMETERS (Note 5)						
$\mathrm{V}_{\text {REF }}$	Output Reference Voltage	Measured at Feedback Pin $\mathrm{V}_{\text {СоMP }}=1.0 \mathrm{~V}$	5.0	4.913/4.900	5.088/5.100	V

Symbol	Parameters	Conditions	Typical	Min	Max	Units
$\Delta \mathrm{V}_{\text {REF }}$	Reference Voltage Line Regulation	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}$ to 40 V	3.3		mV	
G_{M}	Error Amp Transconductance	$\mathrm{I}_{\mathrm{COMP}}=-30 \mu \mathrm{~A}$ to $+30 \mu \mathrm{~A}$ $\mathrm{~V}_{\mathrm{COMP}}=1.0 \mathrm{~V}$	0.750	$\mathbf{0 . 4 4 7}$	$\mathbf{1 . 4 9 1}$	mmho
$\mathrm{A}_{\text {VOL }}$	Error Amp Voltage Gain	$\mathrm{V}_{\text {COMP }}=0.5 \mathrm{~V}$ to 1.6 V $\mathrm{R}_{\text {COMP }}=1.0 \mathrm{M} \Omega$ (Note 6)	165	$99 / 49$		$\mathrm{~V} / \mathrm{V}$

LM2585-12

Symbol	Parameters	Conditions	Typical	Min	Max	Units
SYSTEM PARAMETERS Test Circuit of Figure 3 (Note 4)						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=4 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A} \text { to } 0.8 \mathrm{~A} \end{aligned}$	12.0	11.52/11.40	12.48/12.60	V
$\Delta \mathrm{V}_{\text {OUT }} /$ $\Delta V_{\text {IN }}$	Line Regulation	$\begin{aligned} & \mathrm{V}_{\text {IN }}=4 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A} \end{aligned}$	20		100/200	mV
$\Delta \mathrm{V}_{\text {OUT }} /$ $\Delta \mathrm{I}_{\text {LOAD }}$	Load Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A} \text { to } 0.8 \mathrm{~A} \end{aligned}$	20		100/200	mV
η	Efficiency	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.6 \mathrm{~A}$	93			\%
UNIQUE DEVICE PARAMETERS (Note 5)						
$\mathrm{V}_{\text {REF }}$	Output Reference Voltage	Measured at Feedback Pin $\mathrm{V}_{\mathrm{COMP}}=1.0 \mathrm{~V}$	12.0	11.79/11.76	12.21/12.24	V
$\Delta \mathrm{V}_{\text {REF }}$	Reference Voltage Line Regulation	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}$ to 40 V	7.8			mV
G_{M}	Error Amp Transconductance	$\begin{aligned} & \mathrm{I}_{\text {СоMP }}=-30 \mu \mathrm{~A} \text { to }+30 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	0.328	0.186	0.621	mmho
$\mathrm{A}_{\text {VOL }}$	Error Amp Voltage Gain	$\begin{aligned} & \mathrm{V}_{\text {COMP }}=0.5 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \\ & \mathrm{R}_{\text {COMP }}=1.0 \mathrm{M} \Omega \text { (Note } 6 \text {) } \end{aligned}$	70	41/21		V/V

LM2585-ADJ

Symbol	Parameters	Conditions	Typical	Min	Max	Units
SYSTEM PARAMETERS Test Circuit of Figure 3 (Note 4)						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A} \text { to } 0.8 \mathrm{~A} \end{aligned}$	12.0	11.52/11.40	12.48/12.60	V
$\Delta \mathrm{V}_{\text {OUT }} /$ $\Delta V_{\text {IN }}$	Line Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A} \end{aligned}$	20		100/200	mV
$\Delta \mathrm{V}_{\text {OUT }} /$ $\Delta \mathrm{I}_{\text {LOAD }}$	Load Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A} \text { to } 0.8 \mathrm{~A} \end{aligned}$	20		100/200	mV
η	Efficiency	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.6 \mathrm{~A}$	93			\%
UNIQUE DEVICE PARAMETERS (Note 5)						
$\mathrm{V}_{\text {REF }}$	Output Reference Voltage	Measured at Feedback Pin $\mathrm{V}_{\text {COMP }}=1.0 \mathrm{~V}$	1.230	1.208/1.205	1.252/1.255	V
$\Delta \mathrm{V}_{\text {REF }}$	Reference Voltage Line Regulation	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}$ to 40 V	1.5			mV
G_{M}	Error Amp Transconductance	$\begin{aligned} & \mathrm{I}_{\text {COMP }}=-30 \mu \mathrm{~A} \text { to }+30 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	3.200	1.800	6.000	mmho
$\mathrm{A}_{\text {VOL }}$	Error Amp Voltage Gain	$\begin{aligned} & \mathrm{V}_{\text {COMP }}=0.5 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \\ & \mathrm{R}_{\text {COMP }}=1.0 \mathrm{M} \Omega \text { (Note } 6 \text {) } \end{aligned}$	670	400/200		V/V

Symbol	Parameters	Conditions	Typical	Min	Max	Units
I_{B}	Error Amp Input Bias Current	$\mathrm{V}_{\text {COMP }}=1.0 \mathrm{~V}$	125		425/600	nA

Electrical Characteristics (All Versions)

Symbol	Parameters	Conditions	Typical	Min	Max	Units
COMMON DEVICE PARAMETERS for all versions (Note 5)						
$\mathrm{I}_{\text {S }}$	Input Supply Current	(Switch Off) (Note 8)	11		15.5/16.5	mA
		$\mathrm{I}_{\text {SWITCH }}=1.8 \mathrm{~A}$	50		100/115	mA
V_{UV}	Input Supply Undervoltage Lockout	$\mathrm{R}_{\text {LOAD }}=100 \Omega$	3.30	3.05	3.75	V
f_{O}	Oscillator Frequency	Measured at Switch Pin $\begin{aligned} & \mathrm{R}_{\text {LOAD }}=100 \Omega \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	100	85/75	115/125	kHz
f_{Sc}	Short-Circuit Frequency	Measured at Switch Pin $\begin{aligned} & \mathrm{R}_{\text {LOAD }}=100 \Omega \\ & \mathrm{~V}_{\text {FEEDBACK }}=1.15 \mathrm{~V} \\ & \hline \end{aligned}$	25			kHz
$\mathrm{V}_{\text {EAO }}$	Error Amplifier Output Swing	Upper Limit (Note 7)	2.8	2.6/2.4		V
		Lower Limit (Note 8)	0.25		0.40/0.55	V
$\mathrm{I}_{\text {EAO }}$	Error Amp Output Current (Source or Sink)	(Note 9)	165	110/70	260/320	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SS }}$	Soft Start Current	$\begin{aligned} & \mathrm{V}_{\text {FEEDBACK }}=0.92 \mathrm{~V} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	11.0	8.0/7.0	17.0/19.0	$\mu \mathrm{A}$
D	Maximum Duty Cycle	$\begin{aligned} & \mathrm{R}_{\text {LOAD }}=100 \Omega \\ & \text { (Note 7) } \end{aligned}$	98	93/90		\%
I_{L}	Switch Leakage Current	Switch Off $\mathrm{V}_{\text {SWITCH }}=60 \mathrm{~V}$	15		300/600	$\mu \mathrm{A}$
$\mathrm{V}_{\text {Sus }}$	Switch Sustaining Voltage	$\mathrm{dV} / \mathrm{dT}=1.5 \mathrm{~V} / \mathrm{ns}$		65		V
$\mathrm{V}_{\text {SAT }}$	Switch Saturation Voltage	$\mathrm{I}_{\text {SWITCH }}=3.0 \mathrm{~A}$	0.45		0.65/0.9	V
I_{CL}	NPN Switch Current Limit		4.0	3.0	7.0	A
$\begin{aligned} & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \end{aligned}$	Thermal Resistance	T Package, Junction to Ambient (Note 10) T Package, Junction to Ambient (Note 11) T Package, Junction to Case	65 45 2			
$\theta_{J A}$		S Package, Junction to Ambient (Note 12)	56			${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{J A}$		S Package, Junction to Ambient (Note 13)	35			
$\begin{aligned} & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \end{aligned}$		S Package, Junction to Ambient (Note 14) S Package, Junction to Case	$\begin{gathered} 26 \\ 2 \end{gathered}$			

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions the device is intended to be functional, but device parameter specifications may not be guaranteed under these conditions. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: Note that switch current and output current are not identical in a step-up regulator. Output current cannot be internally limited when the LM2585 is used as a step-up regulator. To prevent damage to the switch, the output current must be externally limited to 3A. However, output current is internally limited when the LM2585 is used as a flyback regulator (see the Application Hints section for more information).
Note 3: The junction temperature of the device $\left(T_{j}\right)$ is a function of the ambient temperature (T_{A}), the junction-to-ambient thermal resistance ($\theta_{J A}$), and the power dissipation of the device $\left(P_{D}\right)$. A thermal shutdown will occur if the temperature exceeds the maximum junction temperature of the device: $P_{D} \times \theta_{J A}+T_{A(M A X)} \geq$ $T_{J(M A X)}$. For a safe thermal design, check that the maximum power dissipated by the device is less than: $P_{D} \leq\left[T_{J(M A X)}-T_{A(M A X)}\right] / \theta_{J A}$. When calculating the maximum allowable power dissipation, derate the maximum junction temperature-this ensures a margin of safety in the thermal design.
Note 4: External components such as the diode, inductor, input and output capacitors can affect switching regulator performance. When the LM2585 is used as shown in Figures Figure 2 and Figure 3, system performance will be as specified by the system parameters.
Note 5: All room temperature limits are 100\% production tested, and all limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods.

Note 6: A $1.0 \mathrm{M} \Omega$ resistor is connected to the compensation pin (which is the error amplifier output) to ensure accuracy in measuring $\mathrm{A}_{\text {vol }}$.
Note 7: To measure this parameter, the feedback voltage is set to a low value, depending on the output version of the device, to force the error amplifier output high. Adj: $\mathrm{V}_{\mathrm{FB}}=1.05 \mathrm{~V} ; 3.3 \mathrm{~V}: \mathrm{V}_{\mathrm{FB}}=2.81 \mathrm{~V} ; 5.0 \mathrm{~V}: \mathrm{V}_{\mathrm{FB}}=4.25 \mathrm{~V} ; 12 \mathrm{~V}: \mathrm{V}_{\mathrm{FB}}=10.20 \mathrm{~V}$.
Note 8: To measure this parameter, the feedback voltage is set to a high value, depending on the output version of the device, to force the error amplifier output low. Adj: $\mathrm{V}_{\mathrm{FB}}=1.41 \mathrm{~V} ; 3.3 \mathrm{~V}: \mathrm{V}_{\mathrm{FB}}=3.80 \mathrm{~V} ; 5.0 \mathrm{~V}: \mathrm{V}_{\mathrm{FB}}=5.75 \mathrm{~V} ; 12 \mathrm{~V}: \mathrm{V}_{\mathrm{FB}}=13.80 \mathrm{~V}$.
Note 9: To measure the worst-case error amplifier output current, the LM2585 is tested with the feedback voltage set to its low value (specified in (Note 7) and at its high value (specified in (Note 8) .
Note 10: Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with $1 / 2$ inch leads in a socket, or on a PC board with minimum copper area.
Note 11: Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with $1 / 2$ inch leads soldered to a PC board containing approximately 4 square inches of (1oz.) copper area surrounding the leads.
Note 12: Junction to ambient thermal resistance for the 5 lead TO-263 mounted horizontally against a PC board area of 0.136 square inches (the same size as the TO-263 package) of 1 oz . (0.0014 in . thick) copper.
Note 13: Junction to ambient thermal resistance for the 5 lead TO-263 mounted horizontally against a PC board area of 0.4896 square inches (3.6 times the area of the TO-263 package) of 1 oz . (0.0014 in . thick) copper.
Note 14: Junction to ambient thermal resistance for the 5 lead TO-263 mounted horizontally against a PC board copper area of 1.0064 square inches (7.4 times the area of the TO-263 package) of 1 oz . (0.0014 in . thick) copper. Additional copper area will reduce thermal resistance further. See the thermal model in Switchers Made Simple software.

LAND PATTERN RECOMMENDATION

CONTROLLING DIMENSION IS INCH
VALUES IN []ARE MILLIMETERS
DIMENSIONS IN ! F FOR REFERENCE ONLY

